Cooperative Research Units
Education, Research And Technical Assistance For Managing Our Natural Resources
Home | Intranet | Digital Measures | Help

Roy, A.H., A.D. Rosemond, D.S. Leigh, M.J. Paul, and J.B. Wallace. 2003. Stream macroinvertebrate response to catchment urbanisation (Georgia, USA). Freshwater Biology 48: 329-346.

Abstract

1. The effects of catchment urbanisation on water quality were examined for 30 streams (stratified into 15, 50 and 100 km2 ± 25% catchments) in the Etowah River basin, Georgia, U.S.A. We examined relationships between land cover (implying cover and use) in these catchments (e.g. urban, forest and agriculture) and macroinvertebrate assemblage attributes using several previously published indices to summarise macroinvertebrate response. Based on a priori predictions as to mechanisms of biotic impairment under changing land cover, additional measurements were made to assess geomorphology, hydrology and chemistry in each stream.

2. We found strong relationships between catchment land cover and stream biota. Taxon richness and other biotic indices that reflected good water quality were negatively related to urban land cover and positively related to forest land cover. Urban land cover alone explained 29–38% of the variation in some macroinvertebrate indices. Reduced water quality was detectable at c. >15% urban land cover.

3. Urban land cover correlated with a number of geomorphic variables such as stream bed sediment size (–) and total suspended solids (+) as well as a number of water chemistry variables including nitrogen and phosphorus concentrations (+), specific conductance (+) and turbidity (+). Biotic indices were better predicted by these reach scale variables than single, catchment scale land cover variables. Multiple regression models explained 69% of variation in total taxon richness and 78% of the variation in the Invertebrate Community Index (ICI) using phi variability, specific conductance and depth, and riffle phi, specific conductance and phi variability, respectively.

4. Indirect ordination analysis was used to describe assemblage and functional group changes among sites and corroborate which environmental variables were most important in driving differences in macroinvertebrate assemblages. The first axis in a non-metric multidimensional scaling ordination was highly related to environmental variables (slope, specific conductance, phi variability; adj. R2=0.83) that were also important in our multiple regression models.

5. Catchment urbanisation resulted in less diverse and more tolerant stream macroinvertebrate assemblages via increased sediment transport, reduced stream bed sediment size and increased solutes. The biotic indices that were most sensitive to environmental variation were taxon richness, EPT richness and the ICI. Our results were largely consistent over the range in basin size we tested.

 

Current Staff

Federal Staff: 3

Masters Students: 5

Phd Students: 11

Post Docs: 2

University Staff: 1

5 Year Summary

Students graduated: 69

Scientific Publications: 35

Presentations: 148

 

Status

Published
February 2003

Access

Publisher Website

Unit Authors

Massachusetts Cooperative Fish and Wildlife Research Unit Cooperators

  1. Massachusetts Division of Fisheries and Wildlife
  2. Massachusetts Division of Marine Fisheries
  3. U.S. Fish and Wildlife Service
  4. U.S. Geological Survey
  5. University of Massachusetts
  6. Wildlife Management Institute